完成三种有限域高斯消元算法和与m4ri/m4rie的接口

This commit is contained in:
shijin 2024-10-23 15:11:24 +08:00
parent 4d9f460888
commit 9b4fb3c50d
14 changed files with 773 additions and 57 deletions

View File

@ -12,14 +12,14 @@ set(CMAKE_CUDA_ARCHITECTURES native) # 设置CUDA架构
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -O3 -maxrregcount=128")
project(cuElim_GF256 LANGUAGES CXX CUDA) #
project(cuElim LANGUAGES CXX CUDA) #
include_directories(${PROJECT_SOURCE_DIR}/include) #
find_package(OpenMP REQUIRED) # OpenMP
add_executable(cuelim ./src/main.cu) #
target_link_libraries(cuelim OpenMP::OpenMP_CXX) # OpenMP
target_link_libraries(cuelim OpenMP::OpenMP_CXX m4ri) # OpenMP
enable_testing() # ctest
add_subdirectory(test) #

View File

@ -1,6 +1,9 @@
#ifndef CUELIM_CUH
#define CUELIM_CUH
#include "gf2/gf2_mul.cuh"
#include "gf2/gf2_elim.cuh"
#include "gf256/gf256_mul.cuh"
#include "gf256/gf256_elim.cuh"

44
include/cuelim_m4ri.cuh Normal file
View File

@ -0,0 +1,44 @@
#ifndef CUELIM_M4RI_CUH
#define CUELIM_M4RI_CUH
#include "gf2/gf2_mul.cuh"
#include "gf2/gf2_elim.cuh"
#include <m4ri/m4ri.h>
namespace gf2
{
void mzdread(mzd_t *A, MatGF2 &mat)
{
assert(A->nrows == mat.nrows && A->ncols == mat.ncols);
for (size_t r = 0; r < A->nrows; r++)
{
for (size_t cn = 0; cn < A->width; cn++)
{
*mat.at_base(r, cn) = A->rows[r][cn];
}
}
}
void mzdwrite(MatGF2 &mat, mzd_t *A)
{
assert(A->nrows == mat.nrows && A->ncols == mat.ncols);
for (size_t r = 0; r < mat.nrows; r++)
{
for (size_t cn = 0; cn < mat.width; cn++)
{
A->rows[r][cn] = *mat.at_base(r, cn);
}
}
}
}
size_t gpu_mzd_elim(mzd_t *A)
{
gf2::MatGF2 mat(A->nrows, A->ncols);
gf2::mzdread(A, mat);
gf2::ElimResult res = mat.gpu_elim();
gf2::mzdwrite(mat, A);
return res.rank;
}
#endif

45
include/cuelim_m4rie.cuh Normal file
View File

@ -0,0 +1,45 @@
#ifndef INTERFACE_CUH
#define INTERFACE_CUH
#include "gf256/gf256_mul.cuh"
#include "gf256/gf256_elim.cuh"
#include <m4rie/m4rie.h>
namespace gf256
{
void mzedread(mzed_t *A, MatGF256 &mat)
{
assert(A->nrows == mat.nrows && A->ncols == mat.ncols);
for (size_t r = 0; r < A->nrows; r++)
{
for (size_t cn = 0; cn < A->x->width; cn++)
{
*mat.at_base(r, cn) = A->x->rows[r][cn];
}
}
}
void mzedwrite(MatGF256 &mat, mzed_t *A)
{
assert(A->nrows == mat.nrows && A->ncols == mat.ncols);
for (size_t r = 0; r < mat.nrows; r++)
{
for (size_t cn = 0; cn < mat.width; cn++)
{
A->x->rows[r][cn] = *mat.at_base(r, cn);
}
}
}
}
size_t gpu_mzed_elim(mzed_t *A)
{
gf256::MatGF256 mat(A->nrows, A->ncols);
gf256::mzedread(A, mat);
gf256::GF256 gf256(A->finite_field->minpoly);
gf256::ElimResult res = mat.gpu_elim(gf256);
gf256::mzedwrite(mat, A);
return res.rank;
}
#endif

207
include/gf2/gf2_elim.cuh Normal file
View File

@ -0,0 +1,207 @@
#ifndef GF2_ELIM_CUH
#define GF2_ELIM_CUH
#include "gf2_mat.cuh"
namespace gf2
{
size_t cpu_elim_base(base_t *base_col, base_t base_col_len, size_t st_r, size_t w, vector<size_t> &p_col, vector<size_t> &p_row)
{
size_t rank = 0;
size_t pivot[gf2_num];
size_t next[gf2_num];
for (size_t pivot_col = 0; pivot_col < gf2_num; pivot_col++)
{
for (size_t r = rank; r < base_col_len; r++)
{
for (size_t i = 0; i < rank; i++)
{
if (next[i] == r)
{
if (get(base_col[r], pivot[i]) != 0)
{
base_col[r] ^= concat(base_zero, pivot[i] + 1, base_col[i]);
}
next[i]++;
}
}
if (get(base_col[r], pivot_col) != 0)
{
p_col.push_back(w * gf2_num + pivot_col);
p_row.push_back(st_r + r);
if (r != rank)
{
base_t temp = base_col[rank];
base_col[rank] = base_col[r];
base_col[r] = temp;
}
pivot[rank] = pivot_col;
next[rank] = rank + 1;
rank++;
break;
}
}
}
return rank;
}
__managed__ uint32_t m_pivot[gf2_num];
__global__ void gpu_mksrc_kernel(base_t *src, size_t s_rowstride, base_t *base_col, size_t rank, uint32_t m_pivot[gf2_num], size_t width)
{
size_t w = blockIdx.x * blockDim.x + threadIdx.x;
if (w >= width)
{
return;
}
base_t temp[gf2_num];
for (size_t r = 0; r < rank; r++)
{
temp[r] = *at_base(src, s_rowstride, r, w);
}
for (size_t r = 0; r < rank; r++)
{
for (size_t i = 0; i < r; i++)
{
if (get(base_col[r], m_pivot[i]) != 0)
{
temp[r] ^= temp[i];
}
}
}
for (size_t rr = 1; rr < rank; rr++)
{
size_t r = rank - 1 - rr;
for (size_t i = r + 1; i < rank; i++)
{
if (get(base_col[r], m_pivot[i]) != 0)
{
temp[r] ^= temp[i];
}
}
}
for (size_t r = 0; r < rank; r++)
{
*at_base(src, s_rowstride, r, w) = temp[r];
}
}
__global__ void gpu_elim_mktb_kernel(base_t *tb, size_t tb_rowstride, base_t *b, size_t b_rowstride, size_t tb_width)
{
size_t w = blockIdx.x * blockDim.x + threadIdx.x;
size_t r = blockIdx.y * blockDim.y + threadIdx.y;
if (w >= tb_width)
{
return;
}
base_t val = base_zero;
base_t idx = r & gf2_table_mask;
base_t st_row = (r >> gf2_table_len) * gf2_table_len;
for (size_t i = 0; i < gf2_table_len; i++)
{
if (get(idx, i) != 0)
{
val ^= *at_base(b, b_rowstride, st_row + i, w);
}
}
*at_base(tb, tb_rowstride, r, w) = val;
}
__global__ void gpu_elim_kernel(base_t *idx, base_t *tb, size_t tb_rowstride, base_t *data, size_t rowstride, size_t rank, uint32_t m_pivot[gf2_num], size_t st_skip, size_t width, size_t nrows)
{
size_t w = blockIdx.x * blockDim.x + threadIdx.x;
size_t r = blockIdx.y * blockDim.y + threadIdx.y;
if (w >= width || r >= nrows || (r >= st_skip && r < st_skip + rank))
{
return;
}
base_t val = idx[r];
base_t temp = base_zero;
for (size_t i = 0; i < gf2_table_num; i++)
{
base_t loc = base_zero;
for (size_t j = 0; (j < gf2_table_len) && (i * gf2_table_len + j < rank); j++)
{
loc |= get(val, m_pivot[i * gf2_table_len + j]) << j;
}
temp ^= *at_base(tb, tb_rowstride, i * (1 << gf2_table_len) + loc, w);
}
*at_base(data, rowstride, r, w) ^= temp;
}
// __managed__ base_t spL[gf2_num];
__host__ ElimResult MatGF2::gpu_elim()
{
MatGF2 tb(gf2_table_num * (1 << gf2_table_len), ncols);
base_t *base_col;
cudaMallocManaged(&base_col, nrows * sizeof(base_t));
base_t *idx;
cudaMallocManaged(&idx, nrows * sizeof(base_t));
size_t rank = 0;
vector<size_t> p_col, p_row;
progress::ProgressBar pb("GPU ELIMINATE", width);
for (size_t w = 0; w < width; w++, pb.tick_display())
{
CUDA_CHECK(cudaMemcpy2D(base_col + rank, sizeof(base_t), at_base(rank, w), rowstride * sizeof(base_t), sizeof(base_t), nrows - rank, cudaMemcpyDefault));
size_t src_rank = cpu_elim_base(base_col + rank, nrows - rank, rank, w, p_col, p_row);
if (src_rank == 0)
{
continue;
}
for (size_t i = 0; i < src_rank; i++)
{
cpu_swap_row(rank + i, p_row[rank + i]);
}
for (size_t r = 0; r < src_rank; r++)
{
size_t loc = (p_col[rank + r] - w * gf2_num);
m_pivot[r] = loc;
}
dim3 block_src(THREAD_X);
dim3 grid_src((width - w - 1) / block_src.x + 1);
gpu_mksrc_kernel<<<grid_src, block_src>>>(at_base(rank, w), rowstride, base_col + rank, src_rank, m_pivot, width);
cudaDeviceSynchronize();
size_t tb_nrows = (src_rank / gf2_table_len) * (1 << gf2_table_len) + (src_rank % gf2_table_len == 0 ? 0 : 1 << (src_rank % gf2_table_len));
dim3 block_tb(THREAD_X, THREAD_Y);
dim3 grid_tb((width - w - 1) / block_tb.x + 1, (tb_nrows - 1) / block_tb.y + 1);
gpu_elim_mktb_kernel<<<grid_tb, block_tb>>>(tb.data, tb.rowstride, at_base(rank, w), rowstride, tb.width);
cudaDeviceSynchronize();
CUDA_CHECK(cudaMemcpy2D(idx, sizeof(base_t), at_base(0, w), rowstride * sizeof(base_t), sizeof(base_t), nrows, cudaMemcpyDefault));
dim3 block(THREAD_X, THREAD_Y);
dim3 grid((width - w - 1) / block.x + 1, (nrows - 1) / block.y + 1);
gpu_elim_kernel<<<grid, block>>>(idx, tb.data, tb.rowstride, at_base(0, w), rowstride, src_rank, m_pivot, rank, width - w, nrows);
cudaDeviceSynchronize();
rank += src_rank;
if (rank == nrows)
{
break;
}
}
cudaFree(base_col);
cudaFree(idx);
return {rank, p_col, p_row};
}
}
#endif

View File

@ -0,0 +1,51 @@
#ifndef GF2_HEADER_CUH
#define GF2_HEADER_CUH
#include "../header.cuh"
namespace gf2
{
static const size_t gf2_num = base_len;
static const size_t gf2_len = 1;
static const size_t gf2_table_num = 8;
static const size_t gf2_table_len = 8;
static const size_t gf2_table_mask = 0xFF;
__host__ inline void del(base_t &dst, size_t idx)
{
dst &= ~(base_one << idx);
}
__host__ inline void set(base_t &dst, size_t idx)
{
dst |= base_one << idx;
}
__host__ inline base_t concat(base_t dst_l, size_t idx_l, base_t dst_r)
{
if (idx_l == 0)
{
return dst_r;
}
if (idx_l == gf2_num)
{
return dst_l;
}
return (dst_l & (base_fullmask >> (base_len - idx_l))) | (dst_r & (base_fullmask << idx_l));
}
__host__ __device__ inline base_t get(base_t src, size_t idx)
{
return (src >> idx) & base_one;
}
__host__ inline base_t rev(base_t n)
{
n = (n & (base_t)0xAA'AA'AA'AA'AA'AA'AA'AA) >> 1 | (n & (base_t)0x55'55'55'55'55'55'55'55) << 1;
n = (n & (base_t)0xCC'CC'CC'CC'CC'CC'CC'CC) >> 2 | (n & (base_t)0x33'33'33'33'33'33'33'33) << 2;
n = (n & (base_t)0xF0'F0'F0'F0'F0'F0'F0'F0) >> 4 | (n & (base_t)0x0F'0F'0F'0F'0F'0F'0F'0F) << 4;
n = (n & (base_t)0xFF'00'FF'00'FF'00'FF'00) >> 8 | (n & (base_t)0x00'FF'00'FF'00'FF'00'FF) << 8;
n = (n & (base_t)0xFF'FF'00'00'FF'FF'00'00) >> 16 | (n & (base_t)0x00'00'FF'FF'00'00'FF'FF) << 16;
return n >> 32 | n << 32;
}
}
#endif

249
include/gf2/gf2_mat.cuh Executable file
View File

@ -0,0 +1,249 @@
#ifndef GF2_MAT_CUH
#define GF2_MAT_CUH
#include "gf2_header.cuh"
#include <random>
#include <vector>
#include <bitset>
// #include <algorithm>
namespace gf2
{
struct ElimResult
{
size_t rank;
vector<size_t> pivot;
vector<size_t> swap_row;
};
class MatGF2
{
public:
enum MatType
{
root,
window,
moved,
};
// 只能构造root矩阵
MatGF2(size_t nrows, size_t ncols) : nrows(nrows), ncols(ncols), type(root)
{
width = (ncols - 1) / gf2_num + 1;
rowstride = ((width - 1) / 4 + 1) * 4; // 以32字节4*64bit为单位对齐
CUDA_CHECK(cudaMallocManaged((void **)&data, nrows * rowstride * sizeof(base_t)));
CUDA_CHECK(cudaMemset(data, 0, nrows * rowstride * sizeof(base_t)));
}
// 只能以base_t为单位建立window矩阵
MatGF2(const MatGF2 &src, size_t begin_ri, size_t begin_wi, size_t end_rj, size_t end_wj) : nrows(end_rj - begin_ri), ncols((end_wj == src.width ? src.ncols : end_wj * gf2_num) - begin_wi * gf2_num), width(end_wj - begin_wi), rowstride(src.rowstride), type(window), data(src.at_base(begin_ri, begin_wi))
{
assert(begin_ri < end_rj && end_rj <= src.nrows && begin_wi < end_wj && end_wj <= src.width);
}
// 只能拷贝构造root矩阵
MatGF2(const MatGF2 &m) : MatGF2(m.nrows, m.ncols)
{
CUDA_CHECK(cudaMemcpy2D(data, rowstride * sizeof(base_t), m.data, m.rowstride * sizeof(base_t), m.width * sizeof(base_t), nrows, cudaMemcpyDefault));
}
MatGF2(MatGF2 &&m) noexcept : nrows(m.nrows), ncols(m.ncols), width(m.width), rowstride(m.rowstride), type(m.type), data(m.data)
{
m.type = moved;
m.data = nullptr;
}
MatGF2 &operator=(const MatGF2 &m)
{
if (this == &m)
{
return *this;
}
assert(nrows == m.nrows && ncols == m.ncols);
CUDA_CHECK(cudaMemcpy2D(data, rowstride * sizeof(base_t), m.data, m.rowstride * sizeof(base_t), m.width * sizeof(base_t), nrows, cudaMemcpyDefault));
return *this;
}
MatGF2 &operator=(MatGF2 &&m) noexcept
{
if (this == &m)
{
return *this;
}
if (type == root)
{
CUDA_CHECK(cudaFree(data));
}
nrows = m.nrows;
ncols = m.ncols;
width = m.width;
rowstride = m.rowstride;
type = m.type;
data = m.data;
m.type = moved;
m.data = nullptr;
return *this;
}
~MatGF2()
{
if (type == root)
{
CUDA_CHECK(cudaFree(data));
}
}
inline base_t *at_base(size_t r, size_t w) const
{
return data + r * rowstride + w;
}
void randomize(uint_fast32_t seed)
{
assert(type == root);
static default_random_engine e(seed);
static uniform_int_distribution<base_t> d;
base_t lastmask = base_fullmask >> (width * base_len - ncols * gf2_len);
for (size_t r = 0; r < nrows; r++)
{
for (size_t w = 0; w < width; w++)
{
*at_base(r, w) = d(e);
}
*at_base(r, width - 1) &= lastmask;
}
}
// 生成随机最简化行阶梯矩阵 前rank_col中选择nrows个主元列
void randomize(size_t rank_col, uint_fast32_t seed)
{
assert(nrows <= rank_col && rank_col <= ncols);
randomize(seed);
vector<size_t> pivot(rank_col);
iota(pivot.begin(), pivot.end(), 0);
random_shuffle(pivot.begin(), pivot.end());
pivot.resize(nrows);
sort(pivot.begin(), pivot.end());
vector<base_t> pivotmask(width, base_fullmask);
for (size_t r = 0; r < nrows; r++)
{
del(pivotmask[pivot[r] / gf2_num], pivot[r] % gf2_num);
}
for (size_t r = 0; r < nrows; r++)
{
for (size_t w = 0; w < pivot[r] / gf2_num; w++)
{
*at_base(r, w) = base_zero;
}
base_t *now = at_base(r, pivot[r] / gf2_num);
*now = concat(base_zero, pivot[r] % gf2_num + 1, *now & pivotmask[pivot[r] / gf2_num]);
set(*now, pivot[r] % gf2_num);
for (size_t w = pivot[r] / gf2_num + 1; w < rank_col / gf2_num + 1; w++)
{
*at_base(r, w) &= pivotmask[w];
}
}
}
bool operator==(const MatGF2 &m) const
{
if (nrows != m.nrows || ncols != m.ncols)
{
return false;
}
for (size_t r = 0; r < nrows; r++)
{
for (size_t w = 0; w < width; w++)
{
if (*at_base(r, w) != *m.at_base(r, w))
{
return false;
}
}
}
return true;
}
bool operator==(const base_t base) const
{
for (size_t r = 0; r < nrows; r++)
{
for (size_t w = 0; w < width; w++)
{
if (*at_base(r, w) != base)
{
return false;
}
}
}
return true;
}
void operator^=(const MatGF2 &m)
{
assert(nrows == m.nrows && ncols == m.ncols);
for (size_t r = 0; r < nrows; r++)
{
for (size_t w = 0; w < width; w++)
{
*at_base(r, w) ^= *m.at_base(r, w);
}
}
}
MatGF2 operator^(const MatGF2 &m) const
{
MatGF2 temp(*this);
temp ^= m;
return temp;
}
void gpu_addmul(const MatGF2 &a, const MatGF2 &b);
friend MatGF2 gpu_mul(const MatGF2 &a, const MatGF2 &b);
MatGF2 operator*(const MatGF2 &m) const
{
return gpu_mul(*this, m);
}
ElimResult gpu_elim();
friend ostream &operator<<(ostream &out, const MatGF2 &m);
size_t nrows, ncols, width;
private:
MatGF2() : nrows(0), ncols(0), width(0), rowstride(0), type(moved), data(nullptr) {}
void cpu_swap_row(size_t r1, size_t r2)
{
if (r1 == r2)
{
return;
}
base_t *p1 = at_base(r1, 0);
base_t *p2 = at_base(r2, 0);
for (size_t i = 0; i < width; i++)
{
base_t temp = p1[i];
p1[i] = p2[i];
p2[i] = temp;
}
}
size_t rowstride;
MatType type;
base_t *data;
};
ostream &operator<<(ostream &out, const MatGF2 &m)
{
for (size_t r = 0; r < m.nrows; r++)
{
for (size_t w = 0; w < m.width; w++)
{
bitset<gf2_num> temp(rev(*m.at_base(r, w)));
out << temp << " ";
}
out << endl;
}
return out;
}
}
#endif

83
include/gf2/gf2_mul.cuh Normal file
View File

@ -0,0 +1,83 @@
#ifndef GF2_MUL_CUH
#define GF2_MUL_CUH
#include "gf2_mat.cuh"
namespace gf2
{
__global__ void gpu_addmul_kernel(base_t *a, size_t a_rowstride, base_t *tb, size_t tb_rowstride, base_t *c, size_t c_rowstride, size_t ncols, size_t width, size_t nrows)
{
size_t w = blockIdx.x * blockDim.x + threadIdx.x;
size_t r = blockIdx.y * blockDim.y + threadIdx.y;
if (w >= width || r >= nrows)
{
return;
}
base_t val = *at_base(a, a_rowstride, r, 0);
base_t temp = base_zero;
for (size_t i = 0; i < gf2_table_num; i++)
{
temp ^= *at_base(tb, tb_rowstride, i * (1 << gf2_table_len) + (val & gf2_table_mask), w);
val >>= gf2_table_len;
}
*at_base(c, c_rowstride, r, w) ^= temp;
}
__global__ void gpu_mktb_kernel(base_t *tb, size_t tb_rowstride, base_t *b, size_t b_rowstride, size_t tb_width)
{
size_t w = blockIdx.x * blockDim.x + threadIdx.x;
size_t r = blockIdx.y * blockDim.y + threadIdx.y;
if (w >= tb_width)
{
return;
}
base_t val = base_zero;
base_t idx = r & gf2_table_mask;
base_t st_row = (r >> gf2_table_len) * gf2_table_len;
for (size_t i = 0; i < gf2_table_len; i++)
{
if (get(idx, i) != 0)
{
val ^= *at_base(b, b_rowstride, st_row + i, w);
}
}
*at_base(tb, tb_rowstride, r, w) = val;
}
__host__ void MatGF2::gpu_addmul(const MatGF2 &a, const MatGF2 &b)
{
assert(a.ncols == b.nrows && a.nrows == nrows && b.ncols == ncols);
MatGF2 tb(gf2_table_num * (1 << gf2_table_len), b.ncols);
progress::ProgressBar pb("GPU MULTIPLY", a.width);
for (size_t w = 0; w < a.width; w++, pb.tick_display())
{
size_t size = min(base_len, a.ncols - w * base_len);
size_t tb_nrows = (size / gf2_table_len) * (1 << gf2_table_len) + (size % gf2_table_len == 0 ? 0 : 1 << (size % gf2_table_len));
dim3 block_tb(THREAD_X, THREAD_Y);
dim3 grid_tb((b.width - 1) / block_tb.x + 1, (tb_nrows - 1) / block_tb.y + 1);
gpu_mktb_kernel<<<grid_tb, block_tb>>>(tb.data, tb.rowstride, b.at_base(w * base_len, 0), b.rowstride, tb.width);
cudaDeviceSynchronize();
dim3 block(THREAD_X, THREAD_Y);
dim3 grid((b.width - 1) / block.x + 1, (nrows - 1) / block.y + 1);
gpu_addmul_kernel<<<grid, block>>>(a.at_base(0, w), a.rowstride, tb.data, tb.rowstride, data, rowstride, size, width, nrows);
cudaDeviceSynchronize();
}
}
__host__ MatGF2 gpu_mul(const MatGF2 &a, const MatGF2 &b)
{
assert(a.ncols == b.nrows);
MatGF2 c(a.nrows, b.ncols);
c.gpu_addmul(a, b);
return c;
}
}
#endif

View File

@ -1,41 +0,0 @@
#ifndef INTERFACE_CUH
#define INTERFACE_CUH
#include "cuelim.cuh"
#include <m4rie/m4rie.h>
void mzedread(mzed_t *A, gf256::MatGF256 &mat)
{
assert(A->nrows == mat.nrows && A->ncols == mat.ncols);
for (size_t r = 0; r < A->nrows; r++)
{
for (size_t cn = 0; cn < A->x->width; cn++)
{
*mat.at_base(r, cn) = A->x->rows[r][cn];
}
}
}
void mzedwrite(gf256::MatGF256 &mat, mzed_t *A)
{
assert(A->nrows == mat.nrows && A->ncols == mat.ncols);
for (size_t r = 0; r < mat.nrows; r++)
{
for (size_t cn = 0; cn < mat.width; cn++)
{
A->x->rows[r][cn] = *mat.at_base(r, cn);
}
}
}
size_t gpu_mzed_elim(mzed_t *A)
{
gf256::MatGF256 mat(A->nrows, A->ncols);
mzedread(A, mat);
gf256::GF256 gf256(A->finite_field->minpoly);
gf256::ElimResult res = mat.gpu_elim(gf256);
mzedwrite(mat, A);
return res.rank;
}
#endif

View File

@ -1,24 +1,30 @@
#define SHOW_PROGRESS_BAR
// #define SHOW_PROGRESS_BAR
#include "cuelim.cuh"
// #include <m4ri/m4ri.h>
#undef SHOW_PROGRESS_BAR
// #include "interface.cuh"
using namespace gfp;
// #undef SHOW_PROGRESS_BAR
bool test_gfp_elim(size_t rank, size_t rank_col, size_t nrows, size_t ncols, uint_fast32_t seed)
using namespace gf2;
bool test_gf2_elim(size_t rank, size_t rank_col, size_t nrows, size_t ncols, uint_fast32_t seed)
{
MatGFP rdc(rank, ncols);
assert(rank <= nrows && rank <= rank_col && rank_col <= ncols);
MatGF2 rdc(rank, ncols);
rdc.randomize(rank_col, seed);
MatGFP mix(nrows, rank);
MatGF2 mix(nrows, rank);
mix.randomize(seed);
MatGFP a = mix * rdc;
ElimResult res = a.gpu_elim();
MatGFP win(a, 0, 0, res.rank, a.width);
MatGF2 src = mix * rdc;
ElimResult res = src.gpu_elim();
MatGF2 win(src, 0, 0, res.rank, src.width);
return rdc == win;
}
int main()
{
cout << test_gfp_elim(2000, 20000, 2500, 25000, 41921095) << endl;
cout << test_gf2_elim(480, 960, 600, 1200, 123) << endl;
}

View File

@ -8,6 +8,7 @@ set(TEST_SRC_FILES
"test_gf256_elim.cu"
"test_gfp_mul.cu"
"test_gfp_elim.cu"
"test_gf2_elim.cu"
)
foreach(SRC ${TEST_SRC_FILES})
@ -18,7 +19,8 @@ foreach(SRC ${TEST_SRC_FILES})
endforeach()
set(TEST_M4RIE_SRC_FILES
"test_interface.cu"
"test_m4ri_interface.cu"
"test_m4rie_interface.cu"
)
foreach(SRC ${TEST_M4RIE_SRC_FILES})

30
test/test_gf2_elim.cu Normal file
View File

@ -0,0 +1,30 @@
#include <gtest/gtest.h>
#include "test_header.cuh"
using namespace gf2;
bool test_gf2_elim(size_t rank, size_t rank_col, size_t nrows, size_t ncols, uint_fast32_t seed)
{
assert(rank <= nrows && rank <= rank_col && rank_col <= ncols);
MatGF2 rdc(rank, ncols);
rdc.randomize(rank_col, seed);
MatGF2 mix(nrows, rank);
mix.randomize(seed);
MatGF2 src = mix * rdc;
ElimResult res = src.gpu_elim();
MatGF2 win(src, 0, 0, res.rank, src.width);
return rdc == win;
}
TEST(TestGF2Elim, Small)
{
uint_fast32_t seed = 41921095;
EXPECT_TRUE(test_gf2_elim(5, 7, 6, 8, seed));
}
TEST(TestGF2Elim, Mediem)
{
uint_fast32_t seed = 41921095;
EXPECT_TRUE(test_gf2_elim(50, 70, 60, 80, seed));
EXPECT_TRUE(test_gf2_elim(500, 700, 600, 800, seed));
}

View File

@ -0,0 +1,37 @@
#include <gtest/gtest.h>
#include "test_header.cuh"
#include "cuelim_m4ri.cuh"
using namespace gf2;
bool test_gf2_elim_interface(size_t rank, size_t rank_col, size_t nrows, size_t ncols, uint_fast32_t seed)
{
assert(rank <= nrows && rank <= rank_col && rank_col <= ncols);
MatGF2 rdc(rank, ncols);
rdc.randomize(rank_col, seed);
MatGF2 mix(nrows, rank);
mix.randomize(seed);
MatGF2 src = mix * rdc;
mzd_t *A_m4ri = mzd_init(src.nrows, src.ncols);
mzdwrite(src, A_m4ri);
mzd_t *A_m4ri_copy = mzd_copy(NULL, A_m4ri);
base_t rank_interface = gpu_mzd_elim(A_m4ri);
rci_t rank_m4rie = mzd_echelonize_m4ri(A_m4ri_copy, 1, 8);
return (rank_interface == rank_m4rie) && (mzd_cmp(A_m4ri, A_m4ri_copy) == 0);
}
TEST(TestM4riInterface, Small)
{
uint_fast32_t seed = 41921095;
EXPECT_TRUE(test_gf2_elim_interface(5, 7, 6, 8, seed));
}
TEST(TestM4riInterface, Mediem)
{
uint_fast32_t seed = 41921095;
EXPECT_TRUE(test_gf2_elim_interface(50, 70, 60, 80, seed));
EXPECT_TRUE(test_gf2_elim_interface(500, 700, 600, 800, seed));
}

View File

@ -1,6 +1,6 @@
#include <gtest/gtest.h>
#include "test_header.cuh"
#include "interface.cuh"
#include "cuelim_m4rie.cuh"
using namespace gf256;
@ -24,14 +24,14 @@ bool test_gf256_elim_interface(size_t rank, size_t rank_col, size_t nrows, size_
return (rank_interface == rank_m4rie) && (mzed_cmp(A_m4rie, A_m4rie_copy) == 0);
}
TEST(TestInterface, Small)
TEST(TestM4rieInterface, Small)
{
uint_fast32_t seed = 41921095;
GF256 gf256(0b100011101);
EXPECT_TRUE(test_gf256_elim_interface(5, 7, 6, 8, gf256, seed));
}
TEST(TestInterface, Mediem)
TEST(TestM4rieInterface, Mediem)
{
uint_fast32_t seed = 41921095;
GF256 gf256(0b100011101);