#ifndef MULTIPLICATION_CUH #define MULTIPLICATION_CUH #include "matrix.cuh" #include "gf28.cuh" // 处理32base列的所有行 __global__ void gpu_addmul_kernel(base_t *a, size_t a_pitch, base_t *b, size_t b_pitch, base_t *c, size_t c_pitch, size_t nrows, size_t width) { __shared__ __align__(8) base_t src[base_deg][THREAD_X]; size_t r = threadIdx.y; size_t w = blockIdx.x * blockDim.x + threadIdx.x; if (w >= width) { return; } if (r < nrows && w < width) src[threadIdx.y][threadIdx.x] = *at_pitch(b, b_pitch, r, w); else src[threadIdx.y][threadIdx.x] = base_zero; __syncthreads(); for (; r < nrows; r += base_deg) { base_t val = *at_pitch(a, a_pitch, r, 0); base_t temp = base_zero; for (size_t i = 0; i < base_deg; i++) { temp ^= mul_base(get8(val, i), src[i][threadIdx.x]); } *at_pitch(c, c_pitch, r, w) ^= temp; } } __host__ void GF28Matrix::gpu_addmul(const GF28Matrix &a, const GF28Matrix &b, const GF28 &gf) { assert(a.ncols == b.nrows && a.nrows == nrows && b.ncols == ncols); cudaMemcpyToSymbol(d_mul_table, gf.mul_table, (1 << base_deg) * (1 << base_deg) * sizeof(gf28_t)); for (size_t w = 0; w < a.width; w++) { dim3 block(THREAD_X, THREAD_Y); dim3 grid((b.width - 1) / block.x + 1); cudaDeviceSynchronize(); gpu_addmul_kernel<<>>(a.at_base(0, w), a.pitch, b.at_base(w * base_num, 0), b.pitch, data, pitch, nrows, width); } cudaDeviceSynchronize(); } #endif