#ifndef GF2_ELIM_CUH #define GF2_ELIM_CUH #include "gf2_mat.cuh" namespace gf2 { size_t cpu_elim_base(base_t *base_col, base_t base_col_len, size_t st_r, size_t w, vector &p_col, vector &p_row) { size_t rank = 0; size_t pivot[gf2_num]; size_t next[gf2_num]; for (size_t pivot_col = 0; pivot_col < gf2_num; pivot_col++) { for (size_t r = rank; r < base_col_len; r++) { for (size_t i = 0; i < rank; i++) { if (next[i] == r) { if (get(base_col[r], pivot[i]) != 0) { base_col[r] ^= concat(base_zero, pivot[i] + 1, base_col[i]); } next[i]++; } } if (get(base_col[r], pivot_col) != 0) { p_col.push_back(w * gf2_num + pivot_col); p_row.push_back(st_r + r); if (r != rank) { base_t temp = base_col[rank]; base_col[rank] = base_col[r]; base_col[r] = temp; } pivot[rank] = pivot_col; next[rank] = rank + 1; rank++; break; } } } return rank; } __managed__ uint32_t m_pivot[gf2_num]; __global__ void gpu_mksrc_kernel(base_t *src, size_t s_rowstride, base_t *base_col, size_t rank, uint32_t m_pivot[gf2_num], size_t width) { size_t w = blockIdx.x * blockDim.x + threadIdx.x; if (w >= width) { return; } base_t temp[gf2_num]; for (size_t r = 0; r < rank; r++) { temp[r] = *at_base(src, s_rowstride, r, w); } for (size_t r = 0; r < rank; r++) { for (size_t i = 0; i < r; i++) { if (get(base_col[r], m_pivot[i]) != 0) { temp[r] ^= temp[i]; } } } for (size_t rr = 1; rr < rank; rr++) { size_t r = rank - 1 - rr; for (size_t i = r + 1; i < rank; i++) { if (get(base_col[r], m_pivot[i]) != 0) { temp[r] ^= temp[i]; } } } for (size_t r = 0; r < rank; r++) { *at_base(src, s_rowstride, r, w) = temp[r]; } } __global__ void gpu_elim_mktb_kernel(base_t *tb, size_t tb_rowstride, base_t *b, size_t b_rowstride, size_t tb_width) { size_t w = blockIdx.x * blockDim.x + threadIdx.x; size_t r = blockIdx.y * blockDim.y + threadIdx.y; if (w >= tb_width) { return; } base_t val = base_zero; base_t idx = r & gf2_table_mask; base_t st_row = (r >> gf2_table_len) * gf2_table_len; for (size_t i = 0; i < gf2_table_len; i++) { if (get(idx, i) != 0) { val ^= *at_base(b, b_rowstride, st_row + i, w); } } *at_base(tb, tb_rowstride, r, w) = val; } __global__ void gpu_elim_kernel(base_t *idx, base_t *tb, size_t tb_rowstride, base_t *data, size_t rowstride, size_t rank, uint32_t m_pivot[gf2_num], size_t st_skip, size_t width, size_t nrows) { size_t w = blockIdx.x * blockDim.x + threadIdx.x; size_t r = blockIdx.y * blockDim.y + threadIdx.y; if (w >= width || r >= nrows || (r >= st_skip && r < st_skip + rank)) { return; } base_t val = idx[r]; base_t temp = base_zero; for (size_t i = 0; i < gf2_table_num; i++) { base_t loc = base_zero; for (size_t j = 0; (j < gf2_table_len) && (i * gf2_table_len + j < rank); j++) { loc |= get(val, m_pivot[i * gf2_table_len + j]) << j; } temp ^= *at_base(tb, tb_rowstride, i * (1 << gf2_table_len) + loc, w); } *at_base(data, rowstride, r, w) ^= temp; } // __managed__ base_t spL[gf2_num]; __host__ ElimResult MatGF2::gpu_elim() { MatGF2 tb(gf2_table_num * (1 << gf2_table_len), ncols); base_t *base_col; cudaMallocManaged(&base_col, nrows * sizeof(base_t)); base_t *idx; cudaMallocManaged(&idx, nrows * sizeof(base_t)); size_t rank = 0; vector p_col, p_row; progress::ProgressBar pb("GPU ELIMINATE", width); for (size_t w = 0; w < width; w++, pb.tick_display()) { CUDA_CHECK(cudaMemcpy2D(base_col + rank, sizeof(base_t), at_base(rank, w), rowstride * sizeof(base_t), sizeof(base_t), nrows - rank, cudaMemcpyDefault)); size_t src_rank = cpu_elim_base(base_col + rank, nrows - rank, rank, w, p_col, p_row); if (src_rank == 0) { continue; } for (size_t i = 0; i < src_rank; i++) { cpu_swap_row(rank + i, p_row[rank + i]); } for (size_t r = 0; r < src_rank; r++) { size_t loc = (p_col[rank + r] - w * gf2_num); m_pivot[r] = loc; } dim3 block_src(THREAD_X); dim3 grid_src((width - w - 1) / block_src.x + 1); gpu_mksrc_kernel<<>>(at_base(rank, w), rowstride, base_col + rank, src_rank, m_pivot, width); cudaDeviceSynchronize(); size_t tb_nrows = (src_rank / gf2_table_len) * (1 << gf2_table_len) + (src_rank % gf2_table_len == 0 ? 0 : 1 << (src_rank % gf2_table_len)); dim3 block_tb(THREAD_X, THREAD_Y); dim3 grid_tb((width - w - 1) / block_tb.x + 1, (tb_nrows - 1) / block_tb.y + 1); gpu_elim_mktb_kernel<<>>(tb.data, tb.rowstride, at_base(rank, w), rowstride, tb.width); cudaDeviceSynchronize(); CUDA_CHECK(cudaMemcpy2D(idx, sizeof(base_t), at_base(0, w), rowstride * sizeof(base_t), sizeof(base_t), nrows, cudaMemcpyDefault)); dim3 block(THREAD_X, THREAD_Y); dim3 grid((width - w - 1) / block.x + 1, (nrows - 1) / block.y + 1); gpu_elim_kernel<<>>(idx, tb.data, tb.rowstride, at_base(0, w), rowstride, src_rank, m_pivot, rank, width - w, nrows); cudaDeviceSynchronize(); rank += src_rank; if (rank == nrows) { break; } } cudaFree(base_col); cudaFree(idx); return {rank, p_col, p_row}; } } #endif